Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 35(17): 7239-7251, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37719035

RESUMO

Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic-phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Although the electronic structure of the Nb analogue has been experimentally investigated, the Ta analogue has received far less attention. Here, we present a comprehensive suite of electronic structure studies on both Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2, resulting in markedly different Fermi wavevectors. The fact that their qualitative magnetic phase diagrams are nevertheless identical shows that hybridization between the intercalant and host lattice mediates the magnetic exchange interactions in both of these materials. We ultimately find that ferromagnetic coupling is stronger in Cr1/3TaS2, but larger spin-orbit coupling (and a stronger Dzyaloshinskii-Moriya interaction) from the heavier host lattice ultimately gives rise to shorter spin textures.

2.
J Phys Chem C Nanomater Interfaces ; 127(20): 9787-9795, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37255923

RESUMO

Transition-metal dichalcogenides (TMDs) intercalated with magnetic ions serve as a promising materials platform for developing next-generation, spin-based electronic technologies. In these materials, one can access a rich magnetic phase space depending on the choice of intercalant, host lattice, and relative stoichiometry. The distribution of these intercalant ions across given crystals, however, is less well defined-particularly away from ideal packing stoichiometries-and a convenient probe to assess potential longer-range ordering of intercalants is lacking. Here, we demonstrate that confocal Raman spectroscopy is a powerful tool for mapping the onset of intercalant superlattice formation in Fe-intercalated NbSe2 (FexNbSe2) for 0.14 ≤ x < 0.25. We use single-crystal X-ray diffraction to confirm the presence of longer-range intercalant superstructure and employ polarization-, temperature-, and magnetic field-dependent Raman measurements to examine both the symmetry of emergent phonon modes in the intercalated material and potential magnetoelastic coupling. Magnetometry measurements further indicate a correlation between the onset of magnetic ordering and the relative degree of intercalant superlattice formation. These results show Raman spectroscopy to be an expedient, local probe for mapping intercalant ordering in this class of magnetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...